Статьи

К списку статей

Комбинированные датчики охранной сигнализации. Часть 1.

Комбинированные датчики, называемые также датчиками двойной технологии, появились относительно недавно и в настоящее время становятся все более популярными. Преимущество таких датчиков заключается в существенном снижении частоты ложных тревог. Это достигается за счет того, что в одном датчике используется комбинация двух различных физических принципов обнаружения. Сигнал тревоги выдается только в том случае, если одновременно или в течение небольшого интервала времени срабатывают оба детектора. Для снижения частоты ложных тревог, используемые принципы обнаружения должны быть такими, чтобы помехи, вызывающие ложные срабатывания, по-разному воздействовали на каждый составляющий комбинацию детектор.

Наибольшее распространение в настоящее время получила комбинация микроволнового активного и ИК-пассивного принципов обнаружения. Гораздо реже используется комбинация ультразвукового и ИК детекторов. Существуют также отдельные образцы датчиков, в которых используются три различных физических принципа обнаружения, однако такие датчики пока не завоевали популярности. В данном обзоре мы будем рассматривать самую распространенную группу датчиков двойной технологии - ИК+микроволновые. Прежде чем перейти к подробному анализу особенностей датчиков двойной технологии, целесообразно остановиться на изложении основных принципов микроволнового метода обнаружения.

МИКРОВОЛНОВЫЙ МЕТОД ОБНАРУЖЕНИЯ

Принцип действия микроволнового активного метода обнаружения основан на излучении в окружающее пространство электромагнитного поля СВЧ диапазона и регистрации его изменений, вызванных отражением от нарушителя, движущегося в зоне чувствительности датчика. Микроволновые активные датчики, реализующие этот метод, относятся к классу детекторов движения.

Микроволновые датчики состоят из следующих основных элементов:

СВЧ генератора;

  • антенной системы, создающей электромагнитное поле в окружающем пространстве, принимающей отраженные сигналы, формирующей диаграмму направленности датчика и определяющей форму пространственной зоны чувствительности;
  • СВЧ приемника, регистрирующего изменение характеристик принятого сигнала;
  • блока обработки, выделяющего сигналы, обусловленные движущимся человеком, на фоне помех.

Генератор микроволнового датчика предназначен для формирования СВЧ сигнала - обычно в 3-х сантиметровом диапазоне длин волн (10...11 ГГц), в последнее время производителями датчиков начали осваиваться и более коротковолновые диапазоны (24...25 ГГц). Первоначально в микроволновых датчиках использовались генераторы на диодах Гана, в настоящее время производители перешли на транзисторные генераторы. Современные СВЧ генераторы позволяют формировать стабильный сигнал с требуемыми характеристиками при малых габаритах и низком потреблении.

В качестве антенной системы в микроволновых датчиках обычно используется единственная совмещенная приемо-передающая антенна. В большинстве современных датчиков применяются микрополосковые антенны, обладающие меньшими габаритами, весом и стоимостью по сравнению с широко использовавшимися ранее рупорными антеннами. Однако рупорные антенны продолжают применяться некоторыми производителями датчиков и в настоящее время, так как обеспечивают несколько более высокую точность формирования диаграммы направленности.

Вообще говоря, формы зон чувствительности микроволновых детекторов не отличаются таким многообразием, как у ИК-пассивных датчиков. Конфигурация зоны чувствительности микроволновых датчиков представляет собой объемное тело, напоминающее по форме эллипсоид. В идеале от антенной системы требуется излучение (и, соответственно, прием) только в переднее полупространство без заметного заднего и бокового излучения (с целью минимизации ложных срабатываний).

Для такой идеальной антенной системы зона чувствительности представляет собой объемное тело каплевидной формы (сплошная кривая на рис.1), характеризующееся углами обзора (в горизонтальной и вертикальной плоскостях), длиной Rmax (максимальной дальностью действия) и шириной D (высотой). Именно эти параметры обычно приводятся в документации на микроволновые датчики (иногда дополняются величинами контролируемых датчиком площади и объема помещения). Типичные значения размеров зоны чувствительности для микроволновых датчиков составляют: Rmax=10...15 м, D=5...10 м, дельта=60°...100°.

Зона чувствительности, формируемая реальной антенной системой, отличается от идеальной - из-за заднего и бокового излучения/приема она приобретает форму, изображенную на рис.1 пунктиром. Отношение Rз/Rmax может составлять 0,03...0,1.

Приведенные выше характеристики справедливы для свободного пространства. При расположении датчика в помещении форма зоны чувствительности существенно искажается. Из-за отражения от ограждающих конструкций (коэффициент отражения по полю от кирпичных и железобетонных стен составляет 0,3...0,6) электромагнитное поле "заполняет" с большей или меньшей степенью равномерности практически все помещение, если размеры этого помещения не превышают размеры зоны чувствительности. С другой стороны, тонкие перегородки из легких материалов, деревянные двери, стекла, шторы не являются существенной преградой для электромагнитного поля, поэтому зона чувствительности может распространяться и за пределы охраняемого помещения, что может привести к ложным срабатываниям, например при проходе людей по коридору или проезде транспорта у окон первого этажа. В то же время, крупногабаритные предметы (шкафы, сейфы и т.п.), находящиеся в помещении, создают "тени" (зоны нечувствительности). Все это должно учитываться при выборе места установки и количества используемых датчиков.

Перемещение нарушителя приводит к появлению изменяющегося во времени отраженного сигнала. Здесь различают два эффекта: изменение пространственной картины стоячих волн и частотный сдвиг отраженной от движущегося человека волны (эффект Доплера). Микроволновые датчики, основанные на регистрации первого эффекта, называются амплитудно-модуляционными, второго - доплеровскими. Вообще говоря, оба этих эффекта неразрывно связаны, имеют общую природу и одинаковое проявление, и поэтому практически неразделимы.

По сути, отличие проявляется в структуре построения и характеристиках СВЧ приемника микроволнового датчика. Наибольшее распространение получили доплеровские микроволновые датчики, имеющие более высокую чувствительность. Доплеровский сдвиг частоты df возникает при движении нарушителя вдоль луча, частота отраженного сигнала возрастает при движении к датчику и уменьшается при движении от датчика. Абсолютная величина df пропорциональна частоте зондирующего сигнала f и составляющей скорости движения вдоль луча. Зависимости df от Vл представлены на рис.2, из которого видно, что типичные значения регистрируемых датчиком величин доплеровского сдвига лежат в диапазоне частот сетевой помехи 50/60 Гц и ее гармоник. Для борьбы с этими помехами современные микроволновые датчики оснащаются режекторными фильтрами (в том числе адаптивными) гармоник сети. Другими источниками помех, вызывающими ложные срабатывания доплеровских микроволновых датчиков, являются отражения от вибрирующих, колеблющихся и движущихся хорошо отражающих объектов.

Такими источниками ложных срабатываний могут быть, например:

  • установочная арматура включенных ламп дневного света;
  • работающее электрооборудование, создающее вибрацию;
  • потоки дождевой воды на стеклах;
  • движение воды в пластиковых трубах;
  • мелкие животные и птицы.

В прежние годы, до широкого распространения ИК-детекторов, микроволновые активные датчики пользовались большой популярностью. Сейчас и спрос, и предложения этих датчиков существенно снизились. Основные характеристики микроволновых датчиков российского производства, предназначенных для установки внутри помещений, приведены в табл1. Все эти датчики имеют сплошную объемную зону чувствительности, предусмотрена возможность регулировки в широких пределах максимальной дальности обнаружения. Рекомендуемая высота установки составляет 2...2,5 м.

Допускается эксплуатация нескольких датчиков в одном помещении - для исключения взаимного влияния сигналов, возможен выбор одной из четырех рабочих частот.

Таблица 1.

Характеристика Аргус-2 Аргус-3 Волна-5 Тюльпан-3
Максимальная дальность действия, м от 2...4 до 12...16 от 2...3 до 6...7,5 от 2...4 до 12...16 от 1,5...3,5 до 15...17
Ширина зоны при наибольшей дальности, м 6...8 3...4 6 12...13
Высота зоны чувствительности при наибольшей максимальной дальности, м 4...5 2...3 8 7...8
Угол обзора в горизонтальной плоскости; гр 100 80...100 100
Угол обзора в вертикальной плоскости; гр 75 45...75 60
Контролируемая площадь, м2 90 25 90 90
Контролируемый объект, м3 200 40 250
Диапазон обнаруживаемых скоростей перемещения, м/с 0,3...3 0,3...3 0,3...3 0,3...3
Напряжение питания, В 10,2...15 10,2...15 10...72 10,2...24
Потребляемый ток, мА 16 30 70
Диапазон рабочих температур, 0С -30...+50 -30...+50 -30...+50 -30...+50
Габариты, мм 98х85х62 90х75х40 98х85х62 90х75х40
Масса, г 250 100 200 250

КОМБИНИРОВАННЫЕ ДАТЧИКИ

Итак, основное преимущество комбинированных датчиков - существенное уменьшение вероятности ложных тревог. Если бы ложные срабатывания каждого детектора, входящего в комбинированный датчик, вызывались бы абсолютно различными физическими явлениями (то есть эти события были бы независимыми), то вероятность ложной тревоги Pлт такого датчика равнялась произведению вероятностей ложных тревог для каждого из детекторов: Pлт=P1 ·P2. Так, при P1=P2=10-5 мы потенциально получили бы снижение частоты ложных срабатываний в 100000 раз. В реальной ситуации выигрыш не так велик, но все же достигнутые характеристики впечатляют: у современных комбинированных ИК+микроволновых датчиков среднее время наработки на ложную тревогу доведено до 3000-5000 часов, что существенно превышает аналогичный показатель датчиков других типов. Потенциально возможный выигрыш недостижим потому, что с одной стороны у ИК и микроволновых детекторов все же имеются общие причины ложных срабатываний, а с другой стороны из-за того, что эти детекторы реагируют на различное движение нарушителя - поперечное пересечение зоны чувствительности для ИК-детектора и движение вдоль луча для микроволнового. В табл.2 приведены наиболее распространенные причины ложных срабатываний ИК и микроволновых (МВ) датчиков.

Таблица 2.

Причина ложных срабатываний ИК МВ
Турбулентность воздуха + -
Изменения температуры + -
Яркий свет + -
Электромагнитные помехи + +
Включенное люминесцентное освещение - +
Вибрации + +
Включенные вентиляторы - +
Электрический звонок _ +
Потоки дождевой воды на стеклах - +
Движение воды в пластиковых трубах - +
Перемещения за пределами помещения - +
Животные и птицы + +

Из таблицы видно, что большинство изменений окружающей среды по разному влияют на каждый детектор и в большинстве случаев не могут привести к одновременному срабатыванию обоих сенсоров. Задача инсталлятора - при установке комбинированного датчика обеспечить наименьшее влияние общих для обоих детекторов помеховых воздействий.

Закономерен вопрос - как комбинированный датчик обнаруживает нарушителя, если детекторы, составляющие комбинацию, реагируют на различные направления движения человека?

Ответ состоит в том, что в процессе ходьбы человек совершает сложные движения, да и вероятность того, что он сможет строго выдержать направление движения точно вдоль луча или перпендикулярно ему, достаточно мала. Кроме того, вследствие переотражений электромагнитных волн от ограждающих конструкций и образования в помещении сложной картины стоячих волн, доплеровский сдвиг частоты, регистрируемый микроволновым детектором, возникает при самых различных направлениях движения. Все это позволяет за счет снижения порога срабатывания добиться одновременного реагирования обоих детекторов на движение нарушителя. Понятно, что при таком снижении порога возрастет вероятность ложных срабатываний, но даже если, например, для одного из датчиков она увеличится до Р1=10-2, то результирующая вероятность ложной тревоги комбинированного датчика все равно снизится в 100 раз (при условии, что Р2 не изменялась, а ложные тревоги по двум детекторам независимы).

Достоинством датчиков двойной технологии является высокий иммунитет по отношению к возможным ошибкам инсталлятора и изменениям окружающей среды после установки и настройки, к которым относятся, например, при установке не были учтены отопление и обогрев помещения, наружная засветка или установка в помещении оборудования, создающего помехи. Преимущество комбинированных датчиков демонстрируется также в узких коридорах и проходах. При использовании в такой ситуации ИК-датчика движение нарушителя происходит без поперечного пересечения нескольких лучей, в связи с чем приходится отказываться от режима многократного подсчета импульсов, что приводит к повышению частоты ложных срабатываний. Применение комбинированного датчика решает эту проблему.

Продолжение статьи

Извещатели охранные

Внешний вид Астра-321 Внешний вид Астра-321
Астра-321
234

Производитель Теко
Внешний вид Астра-515 исп.А Внешний вид Астра-515 исп.А
Астра-515 исп.А
333

Производитель Теко
Внешний вид Астра-5 исп.А Внешний вид Астра-5 исп.А
Астра-5 исп.А
495

Производитель Теко
Внешний вид Астра-531 исп.ИК Внешний вид Астра-531 исп.ИК
Астра-531 исп.ИК
530

Производитель Теко
Внешний вид Астра-512 Внешний вид Астра-512
Астра-512
589

Производитель Теко
Внешний вид Фотон-9 Внешний вид Фотон-9
Фотон-9
602

Производитель Риэлта
Внешний вид Стекло-3 Внешний вид Стекло-3
Стекло-3
615

Производитель Риэлта
Внешний вид Астра-7 исп.А Внешний вид Астра-7 исп.А
Астра-7 исп.А
621

Производитель Теко
Внешний вид Фотон-Ш Внешний вид Фотон-Ш
Фотон-Ш
722

Производитель Риэлта
Внешний вид Астра-621 Внешний вид Астра-621
Астра-621
804

Производитель Теко
Найдено товаров: 694
1 2 3 4 5

Возврат к списку

Создание проекта системы видеонаблюдения всего за несколько минут;
Все РЕАЛЬНО: в т.ч. сектора наблюдения, параметры кабельных трасс;
Загрузка готовых планов и их масштабирование;
Спецификация обрудования и смета создается автоматически;
Дружелюбный интерфейс;
Индивидуальные настройки программы и оборудования.
Техподдержка встроена непосредственно в программу.
Регистрация занимает одну минуту.

ОТ ЗАПРОСА ДО ОФОРМЛЕННОГО ПРЕДЛОЖЕНИЯ - 15 МИНУТ